Introduction

Hello and welcome! You are most likely familiar with what it means to raise a value to a power, but what do you do when that value is a quotient? How do you raise a quotient to a power? In this lesson, you will use your knowledge of exponents to guide you to the answer to these questions.

Power of a Quotient Property

You know that in an exponential expression, the base is the value that is multiplied; the power informs you how many times the base is used as a factor.

Power of a Quotient Property (continued)

Consider raising the quotient of x and y to the fourth power. This expression is equivalent to $\frac{x}{y}$ times $\frac{x}{y}$ times $\frac{x}{y}$ times $\frac{x}{y}$; or more simply x^4 over y^4 .

Power of a Quotient Property (continued)

This example shows the pattern that appears when you raise a quotient to a power; you must raise the numerator to the indicated power, and raise the denominator to the indicated power. This is known as the Power of a Quotient Property.

Power of a Quotient Property

If
$$m \neq 0$$
, then $\left(\frac{a}{m}\right)^r = \frac{a^r}{m^r}$.

Power of a Quotient

Click the examples below the learn more.

Example 1

EXAMPLE 1
Simplify the expression: $\left(\frac{c}{4}\right)^3$
$\left(\frac{c}{-}\right)^3$
(4)
() 3

Simplify the expression: $\left(\frac{c}{4}\right)$

In this example, you are asked to raise the quotient of *c* and 4 to the third power. According to the Power of a Quotient Property, you must raise both the numerator denominator to the third power.

Example 1 (continued)

So the quotient of c and 4 raised to the third power is equivalent to c^3 over 4^3 . Now simplify the denominator. 4^3 is 64. Your work is complete.

The final answer is $\frac{c^3}{64}$.

Example 2

According to the Power of a Quotient Property, to simplify this expression you must raise both the numerator and denominator to the second power.

$$\left(\frac{6x^7y^2}{5v^4}\right)^2 = \frac{\left(6x^7y^2\right)^2}{(5v^4)^2}.$$

Example 2 (continued)

In order to simplify the expressions in the numerator and denominator, you must apply the Power of a Product Property, which in this case means raising each factor to the second power.

Therefore,
$$\frac{(6x^7y^2)^2}{(5v^4)^2} = \frac{6^2 \cdot (x^7)^2 \cdot (y^2)^2}{5^2 \cdot (v^4)^2}$$

Is the expression above true or false?

<mark>A) True</mark>

B) False

Please click on the correct answer.

Example 2 (continued)

Feedback: According to the Power of a Product Property, you must raise each factor in the numerator and denominator to the second power.

Example 2 (continued)

Now simplify the expression in the numerator.

 $6^2 = ?$

Enter the correct answer below and click submit.

Example 2 (continued)

Feedback: $6^2 = 36$.

Example 2 (continued)

Now it's time to raise x^7 to the second power. Remember, to raise a power to a power, you must multiply the exponents.

 $(x^7)^2 = x^?$

A) 5

<mark>B) 14</mark>

C) 49

Which exponent correctly completes the following expression?

Example 2 (continued)

Feedback: $(x^7)^2 = x^{7 \cdot 2} = x^{14}$

Example 2 (continued)

Now, raise y^2 to the second power.

 $(y^2)^2 = y^?$

A) 0 <mark>B) 4</mark> C) 6

Which exponent correctly completes the following expression?

Example 2 (continued)

Feedback: $(y^2)^2 = y^{2 \cdot 2} = y^4$

Example 2 (continued)

Now simplify the expression in the denominator.

 $5^2 = ?$

Enter the correct answer below and click submit.

Example 2 (continued)

Feedback: $5^2 = 25$.

Example 2 (continued)

Now it's time to raise v^4 to the second power. Remember, to raise a power to a power, you must multiply the exponents.

 $(v^4)^2 = v^?$

A) 2 B) 6 C) 8

Which exponent correctly completes the following expression?

Example 2 (continued)

Feedback: $(v^4)^2 = v^{4 \cdot 2} = v^8$.

Example 2 (continued)

Now simplify. Your work is complete.

The final answer is $\frac{36 x^{14} y^4}{25 v^8}$.

Self-Check

Solve the problem in the image above to check your understanding of the content.

Self-Check: Answer

For your reference, the image above shows the correct solution to the self-check problem.

Conclusion

Congratulations! In this lesson, you used your knowledge of exponents to discover a rule that allows you to easily determine the power of a quotient.

