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Introduction 
 

 
 
Hi there! I’m so glad you could join me for this lesson in Algebra I.  In this lesson, you will 
apply the Product Property of Radicals to simplify cube roots of integers.  Your factoring 
skills will prove useful during this lesson. 
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Simplifying Cube Roots of Integers 
 

 
 
Click the examples below to learn more. 
 

• Example One 
• Example Two 
• Example Three 
• Self-Check 
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Example 1 
 

 
 
Represent the given expression in simplest radical form: √723  
 
A cube root expression is in simplest form when the radicand has no perfect cube factors 
other than one.  To represent √723  in simplest radical form, start by completing the prime 
factorization of 72.  You may find it helpful to use a factor tree. 
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Example 1 (continued) 
 

 
 
 
The branches of your factor tree will depend on the initial factors of 72 that you choose to 
begin with.  The prime factors, however, will be the same. 
 
Two possible factor trees of 72: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The prime factorization of 72 is 2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 3. 
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Example 1 (continued) 
 

 
 
Now that you know the prime factorization of 72, you can represent √723  as √2 ∙ 2 ∙ 2 ∙ 3 ∙ 33 . 
 

√723 = √2 ∙ 2 ∙ 2 ∙ 3 ∙ 33  
 
The next step is to identify any multiple factors.  Because you are simplifying a cube root 
expression, the goal is to identify multiple factors that can be rewritten as a cube. 2 ∙ 2 ∙ 2 can 
be represented as 23. 
 

        = √23 ⋅ 3 ∙ 33  
 

You can apply the Product Property of Radicals to represent the cube root of a product as the 
product of the cube roots of the factors.  So √723  can be represented as √233 ∙ √3 ∙ 33 . 
 

         = �233 ∙ √3 ∙ 33  
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Example 1 (continued) 
 

 
 
Now simplify the expression.  Begin with the first cube root factor.  Recall that cubing a 
number and finding the cube root of a number are inverse operations.  This means that 
√233 = 2. 
 
Next simplify the radicand of the second cube root factor by multiplying 3 and 3; 3 ⋅ 3 = 9. 
 

=   2 ⋅ √93  
 
The final step is to simplify the resulting expression.  Your work is complete.  The simplest 
radical form of √723  is 2√93 . 
 

=   2√93  
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Example 2 
 

 
 
Represent the given expression in simplest radical form: √4053  
 
To simplify the expression, begin by representing the radicand as a product of its prime 
factors. 
 

√4053 = √?∙?∙?∙?∙?3  
 
Enter the prime factors into the expression above, then click SUBMIT. You may need to use a 
sheet of paper to create a factor tree.  
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Example 2 (continued) 
 

 
 

√4053 = √3 ∙ 3 ∙ 3 ∙ 3 ∙ 53  
 
You can create a factor tree to complete the prime factorization of 405.  Take a look at the 
example of a factor tree created when the initial factors of 405 were 5 and 81. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The prime factorization of 405 is 3 ⋅ 3 ⋅ 3 ⋅ 3 ⋅ 5. 
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Example 2 (continued) 
 

 
 
Now identify multiple factors that can be rewritten as a cube. 
 

√4053 = √3 ∙ 3 ∙ 3 ∙ 3 ∙ 53 = ? 
 
Choose the appropriate expression below. 
 

A) √34 ⋅ 3 ⋅ 53  
B) √33 ⋅ 3 ⋅ 53  
C) √32 ⋅ 3 ⋅ 53  
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Example 2 (continued) 
 

 
 

√4053 = √3 ∙ 3 ∙ 3 ∙ 3 ∙ 53  
                  = √33 ∙ 3 ∙ 53  
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Example 2 (continued) 
 

 
 

√4053 = √3 ∙ 3 ∙ 3 ∙ 3 ∙ 53  
                  = √33 ∙ 3 ∙ 53  
 
Next apply the Product Property of Radicals to represent the cube root of the product as the 
product of the cube roots of the factors. 
 

�33 ∙ 3 ∙ 53 = �333 ∙ √3 ∙ 53  
 
Is the expression above true or false? 
 

A) True 
B) False 
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Example 2 (continued) 
 

 
 

√4053 = √3 ∙ 3 ∙ 3 ∙ 3 ∙ 53  
                  = √33 ∙ 3 ∙ 53  
                          = �333 ∙ √3 ∙ 53  
 
The expression is true. The cube root of the product equals the product of the cube roots of 
the factors. 
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Example 2 (continued) 
 

 
 

√4053 = √3 ∙ 3 ∙ 3 ∙ 3 ∙ 53  
                  = √33 ∙ 3 ∙ 53  
                          = �333 ∙ √3 ∙ 53  
                          =? 
 
Now simplify the expression. 
 
√333  simplifies to … 
 
Type your answer in the blank space and click SUBMIT. 
  



Module 4: Radical Expressions 
Topic 1 Content: Simplifying Cube Roots of Integers 

 

14 
 

Example 2 (continued) 
 

 
 

√4053 = √3 ∙ 3 ∙ 3 ∙ 3 ∙ 53  
                  = √33 ∙ 3 ∙ 53  
                          = �333 ∙ √3 ∙ 53  
                          = 3 
 
Cubing a number and finding the cube root of a number are inverse operations.  Therefore, 
√333 = 3. 
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Example 2 (continued) 
 

 
 

√4053 = √3 ∙ 3 ∙ 3 ∙ 3 ∙ 53  
                  = √33 ∙ 3 ∙ 53  
                          = �333 ∙ √3 ∙ 53  
                          =  3 ∙ √?3  
 
√3 ∙ 53  simplifies to…. 
 
Type your answer in the blank space and click SUBMIT. 
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Example 2 (continued) 
 

 
 

√4053 = √3 ∙ 3 ∙ 3 ∙ 3 ∙ 53  
                  = √33 ∙ 3 ∙ 53  
                          = �333 ∙ √3 ∙ 53  
                          =  3 ∙ √153  
 
The product of 3 and 5 is 15. Therefore,  √3 ∙ 53  simplifies to √153  . 
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Example 2 (continued) 
 

 
 
Therefore, in simplest radical form √4053  is equivalent to… 
 

A) 15√33  
B) 3√153  
C) 45 
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Example 2 (continued) 
 

 
 
√4053 = √3 ∙ 3 ∙ 3 ∙ 3 ∙ 53      Complete the prime factorization of 405. 
          = √33 ∙ 3 ∙ 53             Represent multiple factors as cubes. 
            = √333 ∙ √3 ∙ 53            Apply the Product Property of Radicals  
            =  3 ∙ √153                  Find the product of the factors of the radicand. 
            =  3√153                   Simplify the expression. 
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Example 3 
 

 
 
Represent the given expression in simplest radical form: √−883  
 
When simplifying the cube root of a negative number, you can be certain that one of the 
factors of the radicand is −1.  So in the given expression, start by representing  √−883  as the 
product of √−13  and √883 .   
 
Next, begin to simplify √883  by representing the radicand as the product of its prime factors.   
 
√883 = √? ⋅ ? ⋅ ? ⋅ ?3  
 
Enter the prime factors into the expression above, then click SUBMIT. You may need to use a 
sheet of paper to create a factor tree.  
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Example 3 (continued) 
 

 
 

√883 = √2 ⋅ 2 ⋅ 2 ⋅ 113  
 
You can create a factor tree to complete the prime factorization of 88.  Take a look at the 
example of a factor tree created when the initial factors of 88 were 8 and 11. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The prime factorization of 88 is 2 ⋅ 2 ⋅ 2 ⋅ 11. 
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Example 3 (continued) 
 

 
 

Now identify multiple factors that can be rewritten as a cube. 
 

√883 = √2 ∙ 2 ∙ 2 ∙ 113 = ? 
 
Choose the appropriate expression. 
 

A) √2 ⋅ 1133  
B) √83 ⋅ 113  
C) √23 ⋅ 113  
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Example 3 (continued) 
 

 
 
√883 = √2 ∙ 2 ∙ 2 ∙ 113  
          = √23 ∙ 113  
 
Three factors of 2 can be represented as a cube. 
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Example 3 (continued) 
 

 
 
√−883 = √−13 ⋅ √883  
             = √−13 ⋅ √2 ⋅ 2 ⋅ 2 ⋅ 113  
             = √−13 ⋅ √23 ⋅ 113  
 
Next apply the Product Property of Radicals to represent the cube root of the product as the 
product of the cube roots of the factors. 
 

�23 ∙ 113 = �23 3 ∙ √113  
 
Is the expression above true or false? 
 

A) True 
B) False 
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Example 3 (continued) 
 

 
 
√−883 = √−13 ⋅ √883  
             = √−13 ⋅ √2 ⋅ 2 ⋅ 2 ⋅ 113  
             = √−13 ⋅ √23 ⋅ 113  
             = √−13 ∙ �233 ∙ √113  
 
The expression is true. The cube root of a product is equal to the product of the cube roots of 
the factors   
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Example 3 (continued) 
 

 
 
√−883 = √−13 ⋅ √883  
             = √−13 ⋅ √2 ⋅ 2 ⋅ 2 ⋅ 113  
             = √−13 ⋅ √23 ⋅ 113  
             = √−13 ∙ �233 ∙ √113  
             =? 
 
Now simplify the expression. 
 
√−13  simplifies to … 
 
Type your answer in the blank space and click SUBMIT. 
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Example 3 (continued) 
 

 
 
√−883 = √−13 ⋅ √883  
             = √−13 ⋅ √2 ⋅ 2 ⋅ 2 ⋅ 113  
             = √−13 ⋅ √23 ⋅ 113  
             = √−13 ∙ �233 ∙ √113  
             = −1 
 
Recall that −1 is a perfect cube.  Therefore, √−13 = −1. 
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Example 3 (continued) 
 

 
 
√−883 = √−13 ⋅ √883  
             = √−13 ⋅ √2 ⋅ 2 ⋅ 2 ⋅ 113  
             = √−13 ⋅ √23 ⋅ 113  
             = √−13 ∙ �233 ∙ √113  
             = −1 ∙ ? 
 
√233  simplifies to … 
 
Type your answer in the blank space and click SUBMIT. 
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Example 3 (continued) 
 

 
 
√−883 = √−13 ⋅ √883  
             = √−13 ⋅ √2 ⋅ 2 ⋅ 2 ⋅ 113  
             = √−13 ⋅ √23 ⋅ 113  
             = √−13 ∙ �233 ∙ √113  
             = −1 ∙  2 
 
Cubing a number and finding the cube root of a number are inverse operations.  Therefore, 
√233 = 2. 
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Example 3 (continued) 
 

 
 
√−883 = √−13 ⋅ √883  
             = √−13 ⋅ √2 ⋅ 2 ⋅ 2 ⋅ 113  
             = √−13 ⋅ √23 ⋅ 113  
             = √−13 ∙ �233 ∙ √113  
             = −1 ∙  2 
 
√113  is in simplest form. 
 

A) True 
B) False 
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Example 3 (continued) 
 

 
 
√−883 = √−13 ⋅ √883  
             = √−13 ⋅ √2 ⋅ 2 ⋅ 2 ⋅ 113  
             = √−13 ⋅ √23 ⋅ 113  
             = √−13 ∙ �233 ∙ √113  
             = −1 ∙  2 ∙ √113  
 
The statement is true. The radicand contains no perfect cube factors other than 1.  Therefore, 
√113  is in simplest radical form. 
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Example 3 (continued) 
 

 
 
In simplest radical form √−883  is equivalent to… 
 

A) −2√113  
B) −22 
C) 2√−113  
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Example 3 (continued) 
 

 
 
In simplest radical form √−883  is equivalent to −2√113 . 
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Example 3 (continued) 
 

 
 
√−883 = √−13 ⋅ √883                       Apply the Product Property of Radicals. 
             = √−13 ⋅ √2 ⋅ 2 ⋅ 2 ⋅ 113         Complete the prime factorization of 88. 
             = √−13 ∙ √233 ⋅ √113             Apply the Product Property of Radicals.  
             =   −1  ∙   2   ⋅   √113           Simplify the perfect cubes. 
             =  −2√113                        Simplify the expression. 
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Self-Check 1 
 

 
 
Solve the problem in the image above to check your understanding of the content. 
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Self-Check 1: Answer 
 

 
 
For your reference, the image above shows the correct solution to the self-check problem. 
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Self-Check 2 
 

 
 
Solve the problem in the image above to check your understanding of the content. 
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Self-Check 2: Answer 
 

 
 
For your reference, the image above shows the correct solution to the self-check problem. 
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Conclusion 
 

 
 
You have reached the conclusion of this lesson where you learned how to apply the Product 
Property of Radicals to simplify cube roots of integers. 
 


