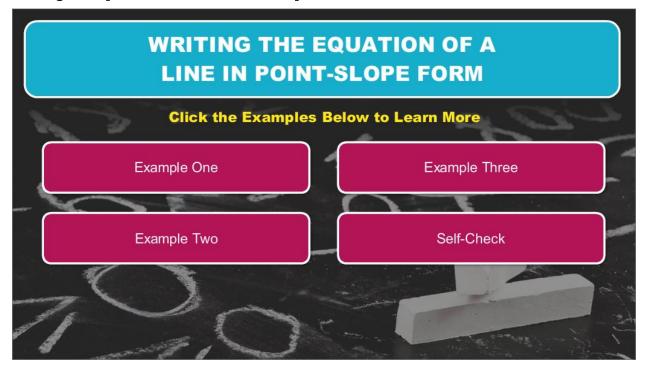
Introduction

Hello and welcome! I'm so glad you could join me for this lesson in Algebra I, where you will learn how to write a linear equation in point-slope form.

Anticipatory Set

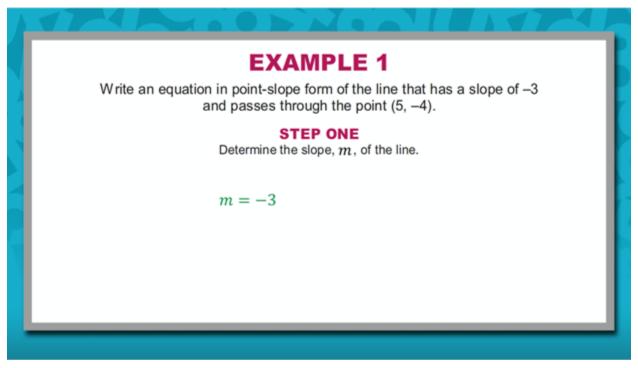
Use the following steps to guide you in the process of writing the equation of a line in pointslope form, when given two points on the line or when given the slope of the line and a point on the line.


Step 1: Determine the slope, *m*, of the line.

Step 2: Write the equation of the line in the form $y - y_1 = m(x - x_1)$ by substituting the slope, m, and the coordinates of a given point for x_1 and y_1 .

Keep these steps in mind as you work through the following examples.

Writing the Equation of a Line in Point-Slope Form



Click the examples below to learn more.

- Example One
- Example Two
- Example Three
- Self-Check

Example 1

Write an equation in point-slope form of the line that has a slope of -3 and passes through the point (5, -4).

Step 1: Determine the slope, m, of the line.

The first step to writing the equation of a line in point-slope form is to determine the slope of the line. For this example, you know that the slope of the line is -3.

$$m = -3$$

Example 1 (continued)

EXAMPLE 1

Write an equation in point-slope form of the line that has a slope of -3 and passes through the point (5, -4).

STEP TWO

Write the equation of the line in the form $y-y_1=m(x-x_1)$ by substituting the slope, m, and the coordinates of a given point for x_1 and y_1 .

$$m = -3$$
 $(x_1, y_1) = (5, -4)$

$$y - y_1 = m(x - x_1)$$

$$y - (-4) = -3(x - 5)$$

Write an equation in point-slope form of the line that has a slope of -3 and passes through the point (5, -4).

Step 2: Write the equation of the line in the form $y - y_1 = m(x - x_1)$ by substituting the slope for m, and the coordinates of a given point for x_1 and y_1 .

In this example, m = -3 and the given point is located at (5, -4).

$$m = -3$$
 $(x_1, x_2) = (5, -4)$

Substitute -4 for y_1 , -3 for m, and 5 for x_1 .

$$y - y_1 = m(x - x_1)$$

$$y - (-4) = -3(x - 5)$$

Example 1 (continued)

EXAMPLE 1

Write an equation in point-slope form of the line that has a slope of -3 and passes through the point (5, -4).

STEP TWO

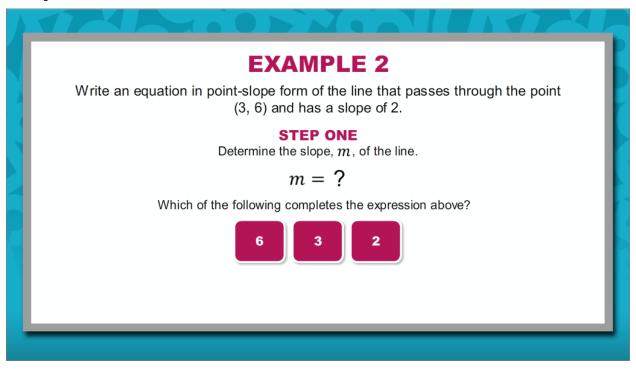
Write the equation of the line in the form $y-y_1=m(x-x_1)$ by substituting the slope, m, and the coordinates of a given point for x_1 and y_1 .

$$m = -3$$
 $(x_1, y_1) = (5, -4)$
 $y - y_1 = m(x - x_1)$
 $y - (-4) = -3(x - 5)$

y + 4 = -3(x - 5)

Write an equation in point-slope form of the line that has a slope of -3 and passes through the point (5, -4).

Next, simplify the left side of the equation.

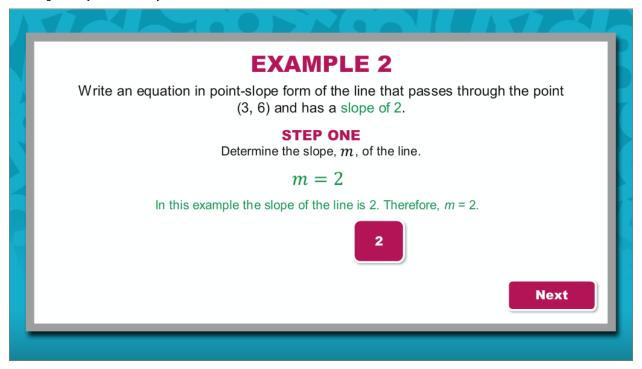

$$y - y_1 = m(x - x_1)$$
$$y - (-4) = -3(x - 5)$$
$$y + 4 = -3(x - 5)$$

The result is an equation in point-slope form that has a slope of -3 and passes through the point (5, -4):

$$y + 4 = -3(x - 5)$$

Example 2

Write an equation in point-slope form of the line that passes through the point (3, 6) and has a slope of 2.

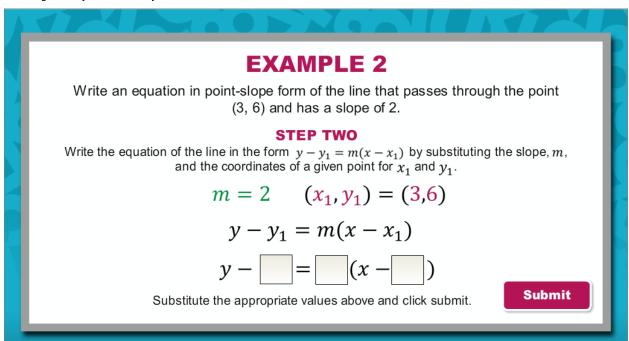

Step 1: Determine the slope, *m*, of the line.

$$m = ?$$

- A) 6
- B) 3
- C) 2

Example 2 (continued)

Write an equation in point-slope form of the line that passes through the point (3, 6) and has a slope of 2.


Step 1: Determine the slope, *m*, of the line.

$$m = 2$$

In this example the slope of the line is 2. Therefore, m = 2.

Example 2 (continued)

Write an equation in point-slope form of the line that passes through the point (3, 6) and has a slope of 2.

Step 2: Write the equation of the line in the form $y - y_1 = m(x - x_1)$ by substituting the slope for m, and the coordinates of a given point for x_1 and y_1 .

In this example, m = 2 and the given point is located at (3, 6).

$$m = 2$$
 $(x_1, x_2) = (3,6)$

$$y - y_1 = m(x - x_1)$$

 $y - ? = ? (x - ?)$

Substitute the appropriate values above and click submit.

Example 2 (continued)

Write an equation in point-slope form of the line that passes through the point (3, 6) and has a slope of 2.

After substituting 2 for m, 3 for x_1 , and 6 for y_1 , the result is y - 6 = 2(x - 3).

$$m = 2$$
 $(x_1, y_1) = (3,6)$

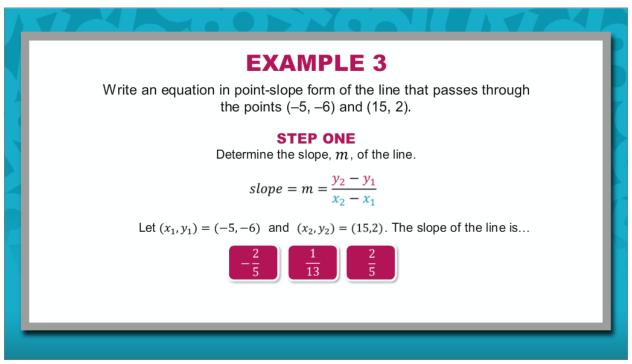
$$y - y_1 = m(x - x_1)$$

$$y - 6 = 2(x - 3)$$

Menu

Write an equation in point-slope form of the line that passes through the point (3, 6) and has a slope of 2.

After substituting 2 for m, 3 for x_1 , and 6 for y_1 , the result is y - 6 = 2(x - 3).


$$m = 2$$
 $(x_1, x_2) = (3,6)$

$$y - y_1 = m(x - x_1)$$

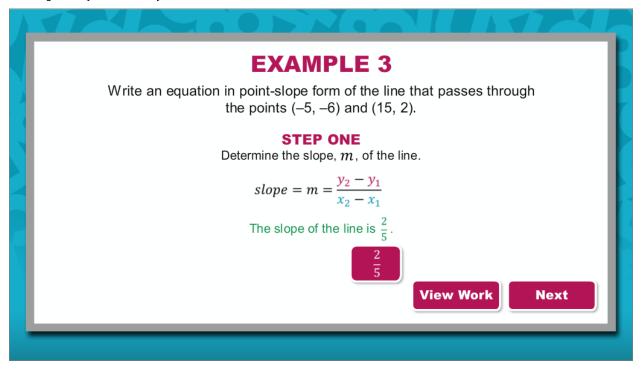
$$y - 6 = 2(x - 3)$$

Example 3

Write an equation in slope-intercept form of the line that passes through the points (-5, -6) and (15, 2).

Step 1: Determine the slope, *m*, of the line.

$$slope = m = \frac{y_2 - y_1}{x_2 - x_1}$$

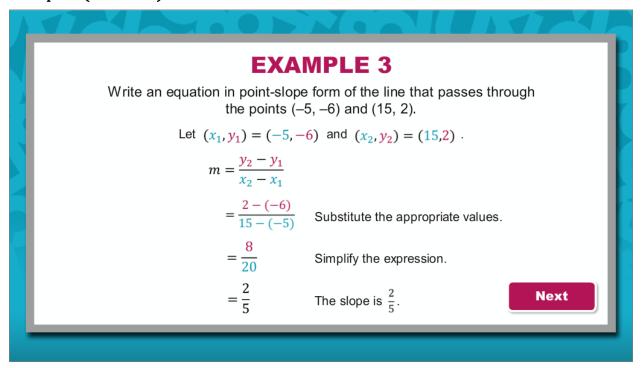

Recall that the slope formula can be used to find the slope of a line that passes through two given points.

Let $(x_1, y_1) = (-5, -6)$ and $(x_2, y_2) = (15, 2)$. The slope of the line is...

- A) $-\frac{2}{5}$
- B) $\frac{1}{13}$
- C) $\frac{2}{5}$

Example 3 (continued)

Write an equation in slope-intercept form of the line that passes through the points (-5, -6) and (15, 2).


Step 1: Determine the slope, *m*, of the line.

$$slope = m = \frac{y_2 - y_1}{x_2 - x_1}$$

The slope of the line is $\frac{2}{5}$.

Example 3 (continued)

Write an equation in slope-intercept form of the line that passes through the points (-5, -6) and (15, 2).

Let
$$(x_1, y_1) = (-5, -6)$$
 and $(x_2, y_2) = (15, 2)$.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 Substitute the appropriate values.

$$= \frac{2 - (-6)}{15 - (-5)}$$

$$= \frac{8}{20}$$
 Simplify the expression.

$$= \frac{2}{5}$$
 The slope of the line is $\frac{2}{5}$.

Example 3 (continued)

EXAMPLE 3

Write an equation in point-slope form of the line that passes through the points (-5, -6) and (15, 2).

STEP TWO

Write the equation of the line in the form $y-y_1=m(x-x_1)$ by substituting the slope, m, and the coordinates of a given point for x_1 and y_1 .

$$m = \frac{2}{5}$$

$$(x_1, y_1) = (-5, -6)$$
 and $(x_1, y_1) = (15, 2)$

Write an equation in slope-intercept form of the line that passes through the points (-5, -6) and (15, 2).

Step 2: Write the equation of the line in the form $y - y_1 = m(x - x_1)$ by substituting the slope for m, and the coordinates of a given point for x_1 and y_1 .

$$m = \frac{2}{5}$$

(x₁, y₁) = (-5, -6) and (x₁, y₁) = (15, 2)

By using the slope formula in Step 1, you found that $m = \frac{2}{5}$. You can choose to substitute the coordinates of either point for x_1 and y_1 , since both of the given points lie on the line.

Example 3 (continued)

EXAMPLE 3

Write an equation in point-slope form of the line that passes through the points (-5, -6) and (15, 2).

$$m = \frac{2}{5} \qquad (x_1, y_1) = (-5, -6) \qquad m = \frac{2}{5} \qquad (x_1, y_1) = (15, 2)$$

$$y - y_1 = m(x - x_1) \qquad y - y_1 = m(x - x_1)$$

$$y - (-6) = \frac{2}{5}(x - (-5)) \qquad y - 2 = \frac{2}{5}(x - 15)$$

$$y + 6 = \frac{2}{5}(x + 5)$$

Write an equation in slope-intercept form of the line that passes through the points (-5, -6) and (15, 2).

If you choose to substitute the coordinates of the point (-5, -6), the result is the equation $y + 6 = \frac{2}{5}(x + 5)$.

If you choose to substitute the coordinates of the point (15, 2), the result is the equation $y - 2 = \frac{2}{5}(x - 15)$.

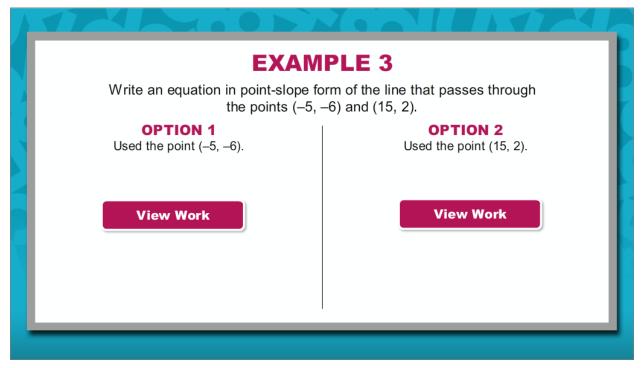
$$m = \frac{2}{5} \quad (x_1, y_1) = (-5, -6)$$

$$m = \frac{2}{5} \quad (x_1, y_1) = (15, 2)$$

$$y - y_1 = m(x - x_1)$$

$$y - (-6) = \frac{2}{5}(x - (-5))$$

$$y + 6 = \frac{2}{5}(x + 5)$$


$$m = \frac{2}{5} \quad (x_1, y_1) = (15, 2)$$

$$y - y_1 = m(x - x_1)$$

$$y - 2 = \frac{2}{5}(x - 15)$$

Example 3 (continued)

Write an equation in slope-intercept form of the line that passes through the points (-5, -6) and (15, 2).

It is important to mention that although the equations appear to represent different lines, by writing the equations in slope-intercept form you can easily determine that the equations are equivalent.

Option 1: Used the point (-5, -6). Option 2: Used the point (15, 2).

View Work View Work

Example 3 (continued)

Write an equation in point-slope form of the line that passes through the points (-5, -6) and (15, 2).

OPTION 1

Used the point (-5, -6).

$$y + 6 = \frac{2}{5}(x + 5)$$

$$y + 6 = \frac{2}{5}x + 2$$
 Distributive Property.

$$\frac{-6}{y = \frac{2}{5}x - 4}$$
 Subtract 6 from each side.

OPTION 2

Used the point (15, 2).

View Work

Write an equation in slope-intercept form of the line that passes through the points (-5, -6) and (15, 2).

Option 1: Used the point (-5, -6).

Option 2: Used the point (15, 2).

$$y + 6 = \frac{2}{5}(x+5)$$

$$y + 6 = \frac{2}{5}x + 2$$
 Distributive property

$$\frac{-6 - 6}{y = \frac{2}{5}x - 4}$$
 Subtract 6 from each side.

View Work

Example 3 (continued)

EXAMPLE 3

Write an equation in point-slope form of the line that passes through the points (-5, -6) and (15, 2).

OPTION 1

Used the point (-5, -6).

$$y + 6 = \frac{2}{5}(x + 5)$$

$$y + 6 = \frac{2}{5}x + 2$$
 Distributive Property.

$$\frac{-6}{y = \frac{2}{5}x - 4}$$
 Subtract 6 from each side.

$$y = \frac{2}{5}x - 4$$

OPTION 2

Used the point (15, 2).

$$y - 2 = \frac{2}{5}(x - 15)$$

$$y-2=\frac{2}{5}x-6$$
 Distributive Property.

$$y = \frac{2}{5}x - 4$$

Menu

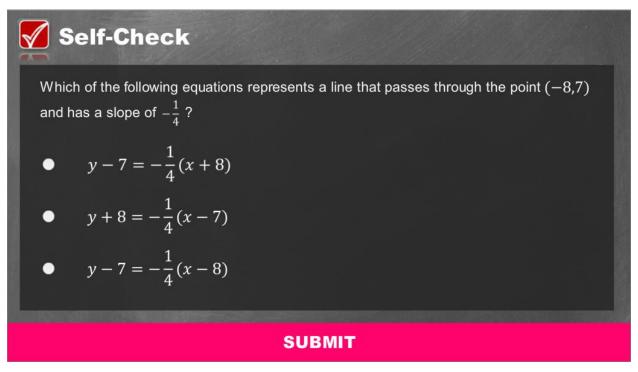
Write an equation in slope-intercept form of the line that passes through the points (-5, -6) and (15, 2).

Option 1: Used the point (-5, -6).

Option 2: Used the point (15, 2).

$$y + 6 = \frac{2}{5}(x+5)$$

$$y + 6 = \frac{2}{5}x + 2$$
 Distributive property $y - 2 = \frac{2}{5}x - 6$ Distributive property


$$y - 2 = \frac{2}{5}(x - 15)$$

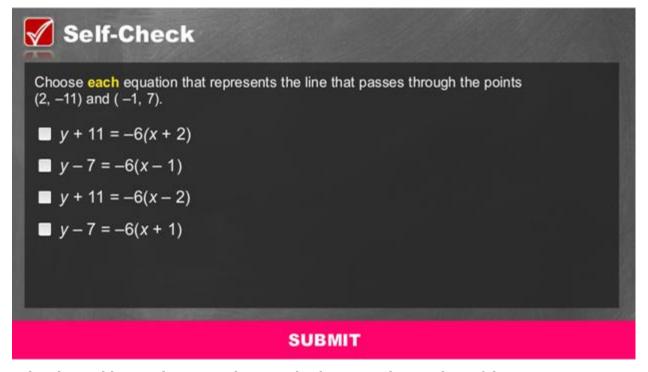
$$y-2 = \frac{2}{5}x-6$$

$$\frac{-6 \quad -6}{y = \frac{2}{5}x - 4}$$
 Subtract 6 from each side.
$$\frac{+2 \quad +2}{y = \frac{2}{5}x - 4}$$
 Add 2 to each side.

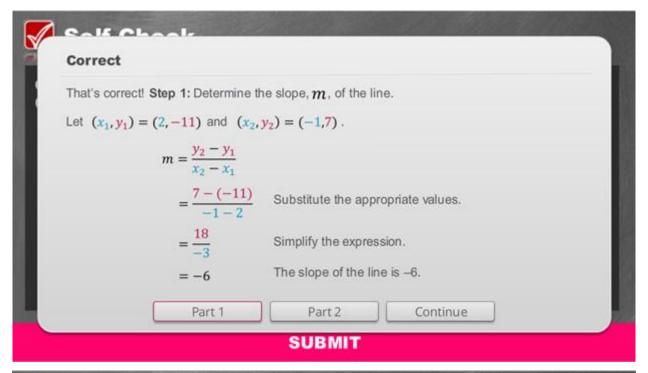
Self-Check 1

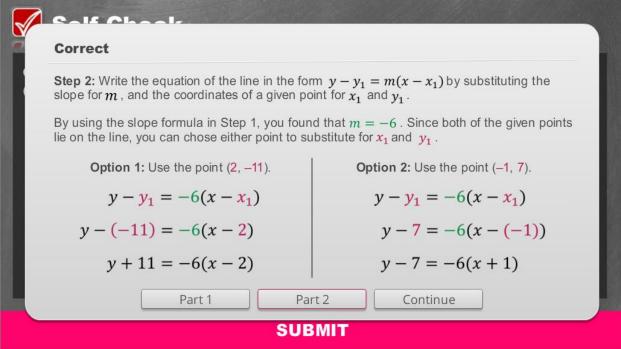
Solve the problem in the image above to check your understanding of the content.

19


Self-Check 1: Answer

For your reference, the image above shows the correct solution to the self-check problem.


Self-Check 2



Solve the problem in the image above to check your understanding of the content.

Self-Check 2: Answer

For your reference, the images above show the correct solution to the self-check problem.

Conclusion

You have reached the conclusion of this lesson where you learned how to write a linear equation in point-slope form.

