Introduction

Learn the formula that astronomers use to determine how fast an object in space, such as a star, is moving either toward or away from Earth. In this interactivity, click on each folder tab for information. Make sure to view the formula first, and then click on each example to see the equation in action. Click on the magnifying glass below each image to enlarge the information.

The Formula

The Formula	Example: Object 1 Example: Object 2
The Fo	ormula
	$\frac{V_{\rm r}}{\rm c} = \frac{\Delta\lambda}{\lambda_0}$
Vr the	e radial velocity of the source of light
c the	speed of light
Δλ th	e change in wavelength
λο the	e measured wavelength of the element at rest

- V_r -- the radial velocity of the source of light
- c -- the speed of light
- $\Delta\lambda$ -- the change in wavelength
- λ_0 -- the measured wavelength of the element at rest

Example: Object 1

The Formula	Example: Object 1 Example: Object 2
Examp	ole: Object 1
	$\frac{V_r}{c} = \frac{\Delta\lambda}{\lambda_0}$
	$V_r = \frac{\Delta \lambda * c}{\lambda_0}$
	$V_r = \frac{(427.6 \text{ nm} - 428.1 \text{ nm}) * (3.0 * 108 \text{ m/s})}{428.1 \text{ nm}}$
	.,
6820 X#24	
If an obj of 428.1 object?	ject has a measured wavelength of 427.6 nm and a wavelength nm as read by a spectrometer, what would be the speed of the
If an obj of 428.1 object? Move th trying to	ject has a measured wavelength of 427.6 nm and a wavelength nm as read by a spectrometer, what would be the speed of the ne formula around so that V _r is alone this is what you are solve. Radial velocity is the speed of the object.

If an object has a measured wavelength of 427.6 nm and a wavelength of 428.1 nm as read by a spectrometer, what would be the speed of the object?

Move the formula around so that V_r is alone -- this is what you are trying to solve. Radial velocity is the speed of the object.

 $V_r = -35,030 \text{ m/s}$

Because the value is negative, we know that the object is approaching. This is how fast it is approaching or blueshifting.

Example: Object 2

The Formula	Example: Object 1	Example: Object 2
Example	e: Object 2	
	$\frac{V_r}{c} = -$	$\frac{\Delta\lambda}{\lambda_0}$
	$V_r = -\frac{1}{2}$	λ ₀ (8.2 nm) * (3.0 * 108 m/s) 678 - 2 nm
	V _r = 2	65,400 m/s
If the spec laboratory traveling?	ctral lines of an object a measured a wavelength	are measured at 678.8 nm and the at 678.2 nm, how fast is the object
Move the trying to so	formula around so that olve. Radial velocity is the	Vr is alone this is what you are speed of the object.
$V_r = 265,40$	10 m/s t this time the answer is	a positive value, meaning that the

If the spectral lines of an object are measured at 678.8 nm and the laboratory measured a wavelength at 678.2 nm, how fast is the object traveling?

Move the formula around so that V_r is alone -- this is what you are trying to solve. Radial velocity is the speed of the object.

$V_r = 265,400 \text{ m/s}$

Notice that this time the answer is a positive value, meaning that the object is receding or redshifting.

