Introduction

Synthesis	Introduction
Decomposition	
Single Replacement	Types of Chemical Reactions
Double Replacement	A chemical reaction takes place when an element or compound changes into a different element or compound. Chemical reactions can occur several different ways. Click on each of the tabs in this interactivity to learn more about different times of searching.

A chemical reaction takes place when an element or compound changes into a different element or compound. Chemical reactions can occur several different ways. Click on each of the tabs in this interactivity to learn more about different types of reactions.

Synthesis

A synthesis reaction occurs when two or more elements or compounds combine and create a new and more complex product. This type of reaction is written as $A + B \rightarrow C$. An example of a synthesis reaction is the combination of hydrogen and oxygen to form the water molecule, as seen in this image.

Decomposition

A decomposition reaction is the opposite of a synthesis reaction. In this reaction, a compound breaks down into smaller and simpler elements or compounds. This reaction is written as $AB \rightarrow A + B$. It can also be written $ABC \rightarrow A + B + C$. As shown in the image, when aluminum bromide decomposes, it produces two aluminum atoms and three bromide ions. Three bromide ions are required to balance the chemical equation.

Single Replacement

A replacement reaction is one in which an element replaces, or displaces, a less active element in a compound. This reaction is written as $AB + C \rightarrow AC + B$. The element may be a metal or nonmetal. Enlarge the image to view three examples of single replacement reactions.

- In the first reaction shown in the image, the metal zinc replaces a metal. This means that zinc can replace copper and will not replace the sulfate ion.
- The second reaction in the image depicts a nonmetal example in which fluorine replaces the chlorine atom. This produces zinc fluoride and chlorine.
- The third reaction in the image shows a metal added to an acid. Zinc is added to hydrochloric acid. The zinc atoms bond with the chlorine atom, creating zinc chloride and hydrogen.

Double Replacement

A double replacement reaction is a reaction in which two compounds react and form new compounds. The formation of more stable compounds, such as of a water or a precipitate, powers these reactions. This reaction is written as $AB + CD \rightarrow AD + CB$. In a double replacement reaction, the cations switch places. During the reaction shown in the image, zinc and copper will switch.

Combustion

	$(H_1 + 2O_2 \rightarrow CO_2 + 2H_2O_1)$
Decomposition	
Single Replacement	CH_4 $2O_2$ CO_2 $2H_2O$ A combustion reaction is an exothermic reaction that occurs
Double Replacement	when oxygen and another element or compound are combined. This reaction is called combustion because it releases light, heat, or both. If a hydrocarbon, such as methane, is a reactant then the products are always carbon dioxide and water.

A combustion reaction is an exothermic reaction that occurs when oxygen and another element or compound are combined. This reaction is called combustion because it releases light, heat, or both. If a hydrocarbon, such as methane, is a reactant then the products are always carbon dioxide and water.

